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Motivation for Current Work
• NASA’s Commercial Supersonic Technology (CST) Project Goals: 

– Design a combustor that produces EINOx emissions in the 5-15 
range at Supersonic Cruise conditions 

– High temperature combustor liners, Composition controlled fuels 

• NASA Glenn Research Center’s N+3 Project Focus: 
• Design/Evaluate Lean-Burn/Lean-Dome combustors in partnership 

with OEMs and injector manufacturers to meet program goals 

• Current work: CFD analysis of 2nd and 3rd generation Lean Direct 
Injection (LDI) flame-tube array for CST Cruise conditions using 
National Combustion Code (OpenNCC) 
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N+2 (LDI-2) vs N+3 (LDI-3) Flametube
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• To accommodate requirements of N+3 combustors as compared to N+2 
(smaller core size, lower EINOx) : 

• Denser packaging of injectors at combustor dome face 
• Redesign of Main elements (pre-filming injector) 
• Redesign of Pilot elements air-flow passages 
• Trade low-power operability provided by recess of ‘center cup’ (N+2) 
for lower NOx (N+3)? 

N+2 (LDI-2) N+3 (LDI-3)



LDI-2/LDI-3 Pilot/Main Injector Hardware
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Woodward FST pre-filming injector for Mains.  
- Fuel injected via plain jet orifice into prefilmer.  
- Axial bladed swirlers for air flow  

Pilot fueled by simplex injector. Circumferential air-flow

OpenNCC analysis provided design-optimization of main/pilot element airflow passages 
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N+3 Injector Array Setup
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19-Element Module Assembly 
Flametube Setup for NASA GRC’s CE-5 Rig
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Physical Models for OpenNCC

• Finite volume, 4-stage Runge-Kutta explicit scheme, 2nd order time-accurate 

• Time-Filtered Navier-Stokes (TFNS) solver (Liu, Wey AIAA 2014-3569) 

• Two-equation, cubic k-ε model with variable Cµ and dynamic wall functions with 
pressure gradient effects (Shih, NASA TM 2000-209936 ) 

• Reduced-kinetics, finite-rate chemistry. Jet-A fuel modeled as surrogate mixture 
of decane (73%), benzene(18%), hexane(9%) (14 species, 18 steps) 
• Adiabatic flame temperature, flame-speed, ignition-delay matched with 

shock-tube data (Kundu, AIAA Paper 2014-3662) 

• Lagrangian spray-modeling for liquid fuel droplets (prescribed droplet 
distribution, injection velocity and direction) (Raju, NASA CR-2012-217294) 

• Turbulence-chemistry interaction modeling: Joint Scalar Monte-Carlo PDF solver 
(Raju, AIAA Paper 2004-0327)

7



RANS/TFNS Non-Reacting Flow
• P3=1.585MPa, T3=922K, Dp = 5% 
• Run 100,000 steps at CFL=0.75 (<1% mass-flow imbalance convergence) 
• Fix Ptot, Ttot at Inflow; Fix pressure at Outflow 
• Compute ACd from CFD prediction of mass flow rate at each inflow boundary. 

• aggregate of 12 mains (N+2), 16 mains (N+3) 
• single pilot (N+2), three pilots (N+3) 
• pilot cooling and dome cooling (N+3)
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OpenNCC prediction target is for total ACd to be within 10% of experimental data



Step 1: Non-Reacting Flow CFD
• What are the flow-field differences between the N+2 and N+3 

designs at supersonic cruise conditions?
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Step 2: Reacting-Flow OpenNCC
• Use OpenNCC CFD analysis to evaluate mixing, performance and 

emissions at supersonic cruise  conditions (NASA cycle) 
• What are the aerodynamics, flame shapes and emissions 

characteristics of the two current designs (N+2 and N+3)? 
• What is the impact of varying the liner cooling flow rate on NOx 

emissions?
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CFD Setup for CST Cruise (N+2/N+3)
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- All Pilots and Mains are fueled at the same equivalence 
ratio of 0.496 (Fuel/Air ratio = 0.034) 

- P3 = 1.585MPa (230psi), T3 = 922K (1200F), Dp = 5% 

- Typical Subsonic Conditions, for which N+2/N+3 hardware was 
optimized: P3 =265psi, T3 = 811K, Dp = 3%
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Reacting Flow - Temperature (K) 
 Flametube Centerline: N+2 vs N+3
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Pilots for N+3 show high temperature ‘hot streaks’ in combustor downstream of 
the dome region
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Reacting Flow - NO mass-fraction(*1e6) 
 Flametube Centerline: N+2 vs N+3
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Pilot dominates NOx production in both configurations 
N+3 Pilot regions have lower NOx than N+2 Pilot.  
Overall NOx is similar for N+2 and N+3
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Exit Plane Temperature and  
NO mass-fraction(*1e6) - N+3
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CFD vs Experiment Comparison 
NO mass-fraction - N+3

A-A

PC90 Experiment OpenNCC 
CFD

20% Liner 
Cooling 30 34

15% Liner 
Cooling 23 26
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Summary and Recommendations
• CFD analysis of a N+2 and N+3 flametube arrays performed with 

OpenNCC for Supersonic Cruise conditions 
• EINOx predictions for the N+2 and N+3 conditions are fairly similar to 

each other 
• CFD predictions of EINOx for the N+3 configuration match 

experimental data to within 15% accuracy 

• Future work will focus on approaches to reduce cruise EINOx to the 
5-15 range. The proposed strategies are: 
• Design of high-temperature combustion liners (reduced cooling air) 
• Compostion controlled fuels (hydro-treated, alkane-only) 
• Redesign injectors optimized for subsonic goals to optimize 

emissions for supersonics goals
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